
 1 -15

Example # 2 b) : Temperature Converter (MsgBox/ InputBox version)
The previous program is made more interactive by using Input Boxes to
“input” the data and Message Boxes to “output” the calculated temperature.
Save Exercise # 2a) under a new name. Delete the Clear button and
associated code, and delete all titles on the worksheet. Remove any code
not shown below; existing code is in italics, new code is in bold.

Option Explicit
 Dim F As Double, C As Double

Private Sub cmdCtoF_Click()
C = InputBox("Enter Temperature in Celsius", "Centigrade to Fahrenheit Conversion")
F = (9 / 5) * C + 32
MsgBox C & " degrees C is equivalent to " & F & " degrees F"
End Sub

Private Sub cmdFtoC_Click()
F = InputBox("Enter Temperature in Fahrenheit", "Fahrenheit to Celsius Conversion")
C = (5 / 9) * (F - 32)
MsgBox F & " degrees F is equivalent to " & C & " degrees C"
End Sub

Message Boxes in general have 3 components: a title, a prompt, and a style. A simplified version has
been used in this exercise which includes only the prompt. As will be noted in chapter 2, the style
describes both the button type and any symbols added to emphasize the prompt (such as exclamation
marks, question marks, critical warning, etc). The simplified version of the message box uses the default
condition of presenting only an OK button.

The Message Box command in simplified form has the syntax MsgBox Prompt . Notice that the prompt
is not contained inside parentheses nor is an equal sign present. [A Message Box Function (described in
chapter 2) is available when it is necessary to return the choice that the user has made, such as Yes, No,
Cancel, etc.]

The prompt, and even the title, can contain variable values as demonstrated in this exercise.

MsgBox F & " degrees F is equivalent to " & C & " degrees C"

Message Boxes and Input Boxes are
more fully discussed in Chapter 2.

The variable values of F and C are linked by
ampersands [&] to text that is entered inside quotes.

Prompt

Default title.

 1 -16

An Input Box has 4 components: a title, a prompt, two buttons, and the box where the actual entry is
made. The Input Box function statement that is used to call up an Input Box has 2 terms in its argu-
ment : a Prompt and a Title; the general syntax is InputBox(Prompt, Title) where the prompt and title
are strings.

F = InputBox("Enter Temperature in Fahrenheit", "Fahrenheit to Celsius Conversion")

If the prompt is long and extends over two or more lines it is convenient to store both the prompt and the
title in strings which might appropriately be named Prompt and Title (refer to Example # 1, Chapter 2).
Unlike the Message Box described next, the user has no control over the type or the number of buttons
displayed.

Caution--Input Box Error : Since F and C
were originally declared as numeric (Dim-med as
Double) an error message indicating a type
mismatch will occur if a non-numeric value is
returned by the Input Box. This will happen if the
user attempts to Cancel , or fails to enter a number
and closes the Input Box, or mis-types and enters
a non-numeric value.

Trapping Errors : Although the purpose of explicitly declaring variables is to identify problem values
before they are converted into numerical equivalents, the consequence of this approach is to produce an
error message that causes the program to “crash”. This is not practical or desirable if the program is to be
used by someone unable to deal with the crash. One solution is to program around, or trap, the error
using an If statement (see section 1.6), the IsNumeric() function (which detects any non-numeric
values), and the End command (which terminates execution). In order to bring in the values of F and C
without causing a type mismatch they are declared as Variants so that they take on the data type of
whatever has been entered.

Prompt Title

 1 -17

The following modifications deal with non-numeric data without crashing the program :

Option Explicit
 Dim F As Variant, C As Variant

Private Sub cmdCtoF_Click()
C = InputBox("Enter Temperature in Celsius", "Centigrade to Fahrenheit Conversion")
If IsNumeric(C) = False Then End
F = (9 / 5) * C + 32
MsgBox C & " degrees C is equivalent to " & F & " degrees F"
End Sub

Private Sub cmdFtoC_Click()
F = InputBox("Enter Temperature in Fahrenheit", "Fahrenheit to Celsius Conversion")
If IsNumeric(F) = False Then End
C = (5 / 9) * (F - 32)
MsgBox F & " degrees F is equivalent to " & C & " degrees C"
End Sub

A more sophisticated modification involves including a message box to inform the user that an error has
occurred just before execution is terminated :

Dim Prompt as String
…..
Prompt = "A non-numeric value was entered. Execution will be terminated"
…..
If IsNumeric(C) = False Then MsgBox Prompt: End

When a lot of values are being read-in it is useful to identify the problem value in the message box.

Unless the program is intended for commercial purposes, the shortcoming here is that a lot of code
would be required to check all the values being read-in -- possibly 30 % of the total code for our
relatively small applications. Aside from being inconvenient in terms of the extra programming time, the
additional code tends to make the program less readable. For the purposes of this course you are advised
to “keep it simple” and let problems be identified by Type mismatch error messages.

IsNumeric() is a Boolean
function that returns a True
value if the argument is
numeric, and False otherwise.

Note the change in data type

A colon is used to separate individual
statements contained on the same line.

 1 -18
1.6 “If” Statements

 An If statement checks if a certain condition (based on comparison operators such as : = > <) is
True or False and then executes code depending on the outcome. Two types of If statements exist :

a single outcome If…Then statement that executes only one set of code if the decision condition
 is True,

and a double outcome If…Then…Else that executes different code for the two possible True or
False outcomes of the If decision condition.

Multiple outcomes can be created by combining (or “nesting”) If statements.

1.6.1 Single Outcome If Statements

The single outcome If has the syntax : If condition Then code statement(s)

All the code must appear on a single line after the Then . However, multiple code statements can be
included in the single line provided they’re separated by colons. In addition, the single line can be
made as long as desired by “continuing” it on the line below provided space-underscore continuation
characters are used.

The condition being tested must evaluate to a Boolean True or False. When the expression evaluates
to True, the code to the right of the Then is executed .

Examples :

 If time > 200 Then Thrust = 0: Drag_Coefficient = 0.05

If Elevator_Weight > 2000 Then Brake = True: Alarm = True

If (X ^ 3 - Y / 2) / Z > X ^ 2 Then X = 2*Y + Z: Worksheets("Sheet1").Range("A2") = X

If Coefficient_Friction < 0 Then MsgBox "Check data !! Coeff. of Friction is negative"

Single outcome If statements must be written on a single line; however, more than one state-
ment can be included in the outcome provided the individual statements are separated by colons.

Calculations can be made in the If condition, and many standard operations such
as read, write, and MsgBox can be included in the outcome statement(s).

Decision
condition

 1 -19

If Years_of_service >= 7 Then Max_Bonus = 15000 : Paid_sick_days = 12 : _

Vacation_days = 20 : Reserved_parking_space = True

1.6.2 Double Outcome If Statements

The double outcome If has the syntax : If condition Then
 Code statements
 Else
 Code statements
 End If

If Years_of_service < 7 Then
 Max_Bonus = 5000
 Paid_sick_days = 8
 Vacation_days = 10
 Reserved_parking_space = False

Else
 Max_Bonus = 15000
 Paid_sick_days = 12
 Vacation_days = 20
 Reserved_parking_space = True
 End If

This double outcome If statement could have been replaced by two single outcome Ifs :

If Years_of_service < 7 Then Max_Bonus = 5000: Paid_sick_days = 8: etc.

If Years_of_service >= 7 Then Max_Bonus = 15000: Paid_sick_days = 12: etc.

A continuation character (a space followed by an underscore) allows a
single line of code (consisting of 4 statements in this case) to be continued
onto the next line. It is, however, still considered as a single line.

The Else outcome
code is optional .

If the condition Years_of_service < 7 is
True the Then outcome is selected.
Control is transferred to the End If once
the last statement is executed.

If the condition Years_of_service < 7 is
False the Else outcome is selected and the
program jumps from the first line of the If
to the Else, and finally to the End If once
all statements have been executed.

For the sake of compactness, simple double outcome If statements can be entered on a single line :

If a <= 10 Then b = 1: c = 2 * a Else b = 2: c = 2 * a - b

An error message will be generated if a single outcome If statement is extended onto more than 1 line
without a continuation character (that is, if the underscore were eliminated above and the colon
retained, or if part of one of the 4 statements were continued on the next line).

Condition
is False

Undetected error : A far more serious error occurs if both the colon and the continuation character are
omitted. The last 2 statements regarding vacation days and parking would no longer be part of the
Then outcome, and would always be executed (in this case, though, everyone would benefit !!)

 1 -20

Example : Suppose you are working in a store that pays $ 10 an hour for the first 40 hours and $ 12
an hour for overtime above 40 hours, with a bonus of $ 200 if you worked 100 hours or more a week
(without being caught asleep !). The following code could be used to calculate your pay :

 Dim Bonus As Double, Total_Hours As Double, Pay As Double, bSleep As Boolean
Bonus = 200
Total_Hours = Range("B3")
bSleep = Cells(2,4)

If Total_Hours <= 40 Then
Pay = Total_Hours * 10

Else
Pay = 40 * 10 + (Total_Hours - 40) * 12

End If

If (Total_Hours >= 100) And (bSleep = False) Then Pay = Pay + Bonus

The condition Total_Hours <= 40 is evaluated as True or False. If it’s True then the line Pay =
Total_Hours * 10 is executed and followed by a transfer to the End If statement. If the condition is
False control is transferred to the Else statement and the line Pay = 40 * 10 + (Total_Hours - 40) * 12
is executed, followed by the End If statement.

Condition checked

Condition checked. Single
Outcome
If

Double
Outcome
If

Code executed if condition is True

Code executed if condition is False

Executed if condition True

bSleep is a Boolean variable that is True if you
were caught sleeping, and False otherwise.

Complex comparisons can be constructed using comparison operators (listed in the Appendix).
For example :

 If (A > 5 And A <= 10) Or (B – C < D) Then …….

where A, B, C, and D may represent either variables or algebraic expressions.

The first condition cannot be written as (A > 5 And <= 10) . The “subject” of the comparison, A, must be
repeated.

An equal sign sometimes represents a true equality ! It was noted earlier that an equal
sign in a computing context is really an assignment operator. An exception occurs with If
statements in which an equal sign does, in fact, act as a traditional equality operator.

 If X = 10 And Y =20 Then …..

****Although it is good practice to repeat the subject of the comparison, the mathematically
familiar operation If 2 <= X <= 10 Then … is accepted by Excel 2003.

 1 -21

1.6.3 Nested If Statements

“Nested” Ifs, or Ifs inside other Ifs, are useful when checking exclusive conditions and can be
used to create multiple outcome situations.

Example : A university registrar’s office needs to create code that selects different response letters based
on an applicant’s transcript marks. The logical structure might appear as follows :

If Average < 60 Then
 ' Send “In your dreams/What were you thinking” letter
Else
 If Average >= 60 And Average < 78 Then
 ' Send polite rejection letter/Reapply after a year at another school.
 Else
 If Average >= 78 And Average <= 88 Then
 ' Warm welcome letter/Send tuition cheques immediately !
 Else
 If Average > 88 And Average <= 98 Then
 ' You definitely qualify for a scholarship/Fill out enclosed forms
 Else
 ' You're brilliant/ Do you want a teaching position ?
 End If
 End If
 End If
 End If

Nested Ifs can be simplified by using the ElseIf statement which eliminates the need for all but the final
End If.

 If Average < 60 Then
 ' Send “In your dreams/What were you thinking/Don't waste our time!” letter
 ElseIf Average >= 60 And Average < 78 Then
 ' Send polite rejection letter/Reapply after a year at another school.
 ElseIf Average >= 78 And Average <= 88 Then
 ' Warm welcome letter/Send tuition cheques immediately !
 ElseIf Average > 88 And Average <= 98 Then
 ' You definitely qualify for a scholarship/Fill out enclosed forms
 Else
 ' You're brilliant/ Do you want a teaching position ?
End If

Indenting and lining
up the If…Else…
End If lines for
each condition
tested makes the
code more readable.

Condition Average > 98 not tested since it’s all that remains.

An alternative to
nested Ifs is the
Select Case
command. Refer
to Appendix 23
or a programming
manual.

Comments : It is good practice in longer programs to document your code with explanatory comments. It
is also sometimes useful to add notes to serve as reminders to change, modify, try, or check something.
A line containing a comment or note must be preceded by an apostrophe ' or the letters Rem , which is
short for Remark. In the example above comments were used to remind the programmer to add
code to produce certain types of letters. Note : A comment cannot be added at the end of a line
that contains a continuation character.

 1 -22

Exercise # 3 : A certain retail store pays sales employees 7.50 $/hour if the total hours worked per
week are less than or equal to 40 hrs, and 11.50 $/hour for hours worked in excess of 40 hours. The
company recognizes that certain work schedules may be undesirable and pays a Salary Bonus of 1.50$
/ hr for all hours worked if such a situation occurs. Also, a $100 Sales Bonus is paid if specific sales
targets are achieved : if sales exceed
$ 4000, or if hourly average sales
exceed $180. [The latter condition
rewards outstanding employees who
work for much less than 40 hours and
thus would have no chance of reaching
the Sales Target.] The bolded condit-
ions above will be represented by If
statements below.

Option Explicit

Private Sub cmdSalary_Click()
Dim Sales As Double, Hours As Double, Undesirable_Hours As Boolean
Dim Salary As Double, Salary_Bonus As Double
Dim Sales_Bonus As Double, Sales_Target As Double

 Sales_Bonus = 0: Salary_Bonus = 0

Hours = Worksheets("Sheet1").Range("C5")
Undesirable_Hours = Worksheets("Sheet1").Range("D5")
Sales = Worksheets("Sheet1").Range("E5")
Sales_Target = Worksheets("Sheet1").Range("F5")

If Hours <= 40 Then
 Salary = Hours * 7.5
 Else
 Salary = 40 * 7.5 + (Hours - 40) * 11.5
End If

If Undesirable_Hours = True Then Salary_Bonus = 1.5 * Hours
If Sales > Sales_Target Or Sales / Hours > 180 Then Sales_Bonus = 100

Salary = Salary + Salary_Bonus + Sales_Bonus

Worksheets("Sheet1").Range("D8") = Salary

End Sub

 A double outcome If statement is used to decide if the hours worked are less than or equal to 40
in which case the pay rate is set to 7.50 $/hr (the Then alternative), or greater than 40 such that the pay
rate is 11.50 $/hr (the Else alternative). The difference (Hours – 40) determines the number of overtime
hours to be paid at 11.50 $/hr.

Observe that the calculation of sales
per hour can be made within the If .

Although not absolutely necessary,
it is prudent to initialize values that
may not be explicitly defined later.

Undesirable_Hours is a Boolean
variable, which means that it has
only two possible values : True
or False (or 1 or 0)

Read-in
the data.

The basic salary is augmented by two possible
bonuses. Note the unorthodox algebra.

Underscores are often used to link words in
variable names to make them more readable.
Eg. Undesirable_Hours

 1 -23
The Sales Bonus condition could be made more stringent by requiring that it be met without overtime
being paid using the following statement :

If Sales > Sales_Target And Hours <= 40 Or Sales / Hours > 180 Then Sales_Bonus = 100

[The 40 hour condition is not applied to employees generating in excess of 180 $/hour since it is clearly
advantageous to let them work as long as they want. Though a minimum hours condition might be added
to ensure that they don’t take only a few prime hours .

Either the first condition or the second condition must be satisfied to obtain a bonus; hence the appear-
ance of the Or operator linking the two conditions. The first condition has two necessary parts that must
simultaneously be satisfied; hence the presence of the And operator linking the two parts. Brackets are
sometimes used to group conditions to make them more readable, especially those linked via And
operators :

If (Sales > Sales_Target And Hours <= 40) Or (Sales / Hours > 180) Then Sales_Bonus = 100

1.7 Writing Your Own Code
[This section was written for a group of students who were having unusual difficulty “seeing” how to construct a
program based on a problem situation. The process given here is somewhat longer than it needs to be. If you’re
having difficulty with the first assignment you may want to read this section, otherwise it’s optional.]

 Up until this point the code for the various programs has been provided; the next step it to learn to
develop your own code. What is given in this section is one approach to developing a program; you’ll
no doubt develop your own variations as you gain experience. Each program will require at least one
control which is used to activate the program, and the basic program structure given on page 1-1 will
be helpful in determining what components will likely be required.

A good starting point is to read the program “requirement” (that is, the problem statement describ-
ing what is to be done) and identify which variables will be needed. For example, suppose that the
following program requirement was presented :

1st Condition 2nd condition

A certain province has simplified it’s income tax system so that there are only 2 tax brackets :
for taxable income less than or equal to $ 40,000 the tax rate is 15 % ; for taxable income greater than
$ 40,000 the tax rate is 25 % for the portion above $ 40,000 (the first $ 40,000 is taxed at 15 %).

 Design a program that reads the value of rate1 (15 %, or 0.15) and the value of rate2 (25 %, or
0.25) in from the worksheet. Use an Input Box to enter the value of a person’s taxable income and
a Message Box to display the amount of tax paid; also write the tax to be paid into a cell on the
worksheet.

The original decision statement at the top of the page is of the form : If A And B Or C Then … which
is ambiguous since we’re not certain how it will be evaluated; that is, will the And be evaluated first, or
will the Or . The decision might be interpreted as either : If A And (B Or C) Then … or as
If (A And B) Or C Then … Write a small program to identify how it is evaluated.

 1 -24

Clearly, variables describing the two tax rates, the taxable income, and the tax to be paid will be

required, so the initial set of variables would be : rate1, rate2, Taxable_Income, and Tax . The need
for other variables may become apparent later in the program development. Next, the data type of each
variable should be identified. Although money and percentages are involved in this application the vast
majority of problems in these notes concern physics and engineering applications, so we’ll simply
declare these four variables as double precision (Double). [Despite any personal preferences to round
values up or down to the nearest dollar, it’s not a good idea to work with Integer declarations for
Taxable_Income, and Tax since the maximum value is 32,767; of course a Long integer declaration
could be used.]

 Buttons are the most convenient choice to allow a user to activate subroutines 5 so that a button
would be added to the worksheet with a Name something like cmdTax and an informative Caption
such as Calculate Tax. Double clicking on the button (in design mode) creates the subroutine shell
in which the variables are declared with Dim statements. The first code entered appears as :

Option Explicit

Private Sub cmdTax_Click()
Dim rate1 As Double, rate2 As Double, Taxable_Income As Double, Tax As Double

End Sub

Note : if the variables are to be used in more than one subroutine they would have to be declared in the
general declarations section under the Option Explicit statement.

 The next step is to create the code to read-in the various input quantities which in this case are
rate1, rate2, and Taxable_Income. Convenient cells are selected for entering the input values keeping
in mind the need for appropriate descriptive titles and labels. In this example cells B2 and B3 are used
to hold the values of rate1 and rate2. Although the problem requirement indicated that the Taxable_
Income should be entered via an Input Box, a useful strategy until you develop confidence is to keep it
simple at first and add all the “bells and whistles” later. Accordingly, the variable Taxable_Income has
been set to some convenient test value, Taxable_Income = 10000, within the subroutine, and will not
be entered via an Input Box until later.

rate1 = Worksheets("sheet1").Range("B2")
rate2 = Worksheets("sheet1").Range("B3")
Taxable_Income = 10000

At this point it is useful to add any output statements realizing, nevertheless, that the actual value

of the output has yet to be determined. The value of Tax will be written into cell B5 using Worksheets
("sheet1").Range("B5") = Tax . In order to test the program input and output statements a simple but
meaningless value of the output variable Tax will be constructed from the input values : Tax = rate1 +
rate2 + Taxable_Income . This statement allows us to also check if the input values are being correctly
read-in. The calculation of the output value must, of course, be performed before the write statement is
__
5 although it might be amusing to dump the final code into, say, a scroll bar control, which would

work, but which might end up being a little annoying.

 1 -25

encountered. The code entered so far is thus :

Option Explicit

Private Sub cmdTax_Click()
Dim rate1 As Double, rate2 As Double, Taxable_Income As Double, Tax As Double

rate1 = Worksheets("sheet1").Range("B2")
rate2 = Worksheets("sheet1").Range("B3")
Taxable_Income = 10000

Tax = rate1 + rate2 + Taxable_Income

Worksheets("sheet1").Range("B5") = Tax

End Sub

 After values for rate1 and rate2 have been entered into cells B2 and B3 the program can be tested.
The value of Tax should be 10000.40 .

 The final, most important, and usually the most difficult step is to construct the actual numerical
analysis portion of the program. It is often useful to imagine how you would approach such an analysis
without a computer, and then to develop the equivalent procedure in terms of computer code. In the
present example you would examine the input value of Taxable_Income and decide if it was less than
or equal to $ 40,000, or greater than $ 40,000. This suggests that a double outcome If statement might be
used to computationally model the decision.

If Taxable_Income <= 40000 Then
do something

 Else
 otherwise do something else

End If

Depending on the outcome of the decision, the Tax would be calculated in one of two possible
ways. If the value of Taxable_Income is less than or equal to $ 40,000 the Tax is simply the
Taxable_Income multiplied by rate1; mathematically and in terms of proper arithmetic operators
Tax = Taxable_Income*rate1 . Otherwise, if the value of Taxable_Income is greater than $ 40,000 ,
the Tax calculation has two terms : the first term is the tax on the $ 40,000 portion of income at rate1,
while the second term calculates the portion of income above $ 40,000 as (Taxable_Income – 40000)
and multiples it by rate2 .

Tax = 40000*rate1 + (Taxable Income - 40000)*rate2

[Notice that the use of appropriate variable names not only makes the code more readable but usually
simplifies the task of converting the normal mental analysis into the equivalent computer code analysis.]

Input Read statements

Meaningless test calculation using input data.
Remove once this code is working.

Output write statement

Data type declaration statements

Portion of income
above $ 40,000.

Tax on first $ 40,000

 1 -26

The two calculation statements are now entered into the If…Then…Else :

If Taxable_Income <= 40000 Then

Tax = Taxable_Income * rate1
 Else
 Tax = 40000 * rate1 + (Taxable_Income - 40000) * rate2

End If

The complete code to this point is :

Option Explicit
Private Sub cmdTax_Click()
Dim rate1 As Double, rate2 As Double, Taxable_Income As Double, Tax As Double

rate1 = Worksheets("sheet1").Range("B2")
rate2 = Worksheets("sheet1").Range("B3")
Taxable_Income = 10000

If Taxable_Income <= 40000 Then

Tax = Taxable_Income * rate1
Else

 Tax = 40000 * rate1 + (Taxable_Income - 40000) * rate2
End If

Worksheets("sheet1").Range("B5") = Tax
End Sub

An Input Box can now used to read-in the value of the Taxable_Income .

Taxable_Income = InputBox("Enter your taxable income", "Taxable Income")

And a Message Box is added just before End Sub to display the amount of Tax to be paid.

MsgBox "You will have to pay $ " & Tax & vbCr & " on your taxable income of $ " & _
Taxable_Income, vbExclamation, "The Bad News !"

The worksheet and output message box appear as :

Continuation character

Replaced by Input Box

 $ 40,000 cannot be written
with a comma or dollar sign.

The components of this message box
will be considered in chapter 2.

 1 -27

1.8 Miscellaneous Tips & Difficulties [Skip on your first read through]

Moving from the Worksheet to the VB Editor : The VB Editor can be accessed in five ways :
double-clicking on a control in Design Mode, via the VB Editor icon on the VB Toolbar, using
Alt + F11, via the VB Editor icon on the taskbar at the top or bottom of your screen, or Tools menu
⇒ Macro ⇒ Visual Basic Editor. Avoid using the View Code icon at the top of the Toolbox since
it always seems to produce the extraneous subroutine shell given below :

Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range)
End Sub

Moving from the VB Editor to the Worksheet : Four ways are available to return to the Worksheet :
via the Excel icon at the left end of the tool bar (probably just below the File menu), via the Work-
sheet icon on the taskbar at the top or bottom of your screen, Alt + F11 (it toggles you back & forth),
View menu ⇒ Microsoft Excel.

Grayed-out VB Toolbar : Immediately after a program has been run the VB Toolbar will be “grayed-
out” (except for the Design Mode icon), which means that the VB Editor icon cannot be used to access
the Code window; nor can Alt + F11 which also isn’t working. Fortunately,
the Task Bar icon above (or below) the worksheet window will work
(provided the Editor has already been accessed). Clicking on any worksheet
cell, or clicking in and out of Design Mode will restore all functions.

The Program won’t run : You may occasionally push a button, but have nothing happen. Consider the
following : write statements may have been omitted, you may be caught in an infinite loop (discussed in
Chapter 3 -- use Ctrl + Break), if an error occurred when the program was last run you may have
forgotten to reset the program. To reset the program click in and out of Design Mode, or go into the VB
Editor and press the VCR Stop button. If none of the above work, you may have a screen-freeze : press
Ctrl + Alt + Delete and hope that you’d saved recently !

Empty VB Editor : If the Sheet1 Code window is not open try one of the following : enter the View
menu ⇒ Code (should be the first item) , press F7 , if the Project Explorer is open double-click on
Sheet1(Sheet1) or click on the View Code icon at the top left . Occasionally the various windows in the
VB Editor become too large, or attach themselves awkwardly to other windows, refer to Appendix A.2
 at the end of the notes for corrective measures (Docking & Restoring).

Grayed-out icons.

VCR play button
Project
Explorer
icon

Double click
to open Sheet1
Code Window

Project
Explorer
Window

Return to
Worksheet

Properties
Window

VCR Stop/ Reset

 1 -28

Problems [Chapter 1] [Include Clear Buttons with your programs]

1. Write a program that reads the polar form (magnitude & direction) of a vector from two cells on a

worksheet, calculates the X and Y components (rectangular form), and writes the components back
onto the worksheet. The angle is measured with respect to the positive X axis.

2. Construct a program that converts between Canadian and US dollars. Use a separate button for each

of the two possible conversions [as in Example # 2a)]. The program should read the conversion rate
(the number of US dollars required to buy 1 $Cdn : use 0.64) from an Input Box, and the number
of dollars to be converted from the spreadsheet. The conversion rate should be written somewhere on
the worksheet. The converted value should be displayed on the worksheet and in a Message Box
along with the original dollars and conversion rate. [The conversion factor will be 1/0.64 for one of
the conversions.] Refer to pg 1-15 & 1-16 for Input Box & Message Box syntax.

3. Two different expressions describe the magnitude of the gravitational field (acceleration) due to a

solid, spherical object of radius R depending on whether the field point (location “r” – which is
measured from the center of the object) is inside the object, or outside the object.

 [The expression for r < R can be derived by applying Gauss’ Law to a solid, spherical distribution of

 mass. For the sake of continuity, the two expressions must have the same value at r = R .]

 Write a program that calculates values of “g” in the vicinity of the Earth (M = 5.98E+24 kg,

R = 6.37E+06 m, G = 6.67259E−11 N m2/kg2). The value of “r” should be read in from the
worksheet, or via an Input Box. The value of “g” should be written back into some cell on the
worksheet and displayed in a Message Box.

4. A utility company, Hydro-Quebec, provides electrical power at the following rates :

 0.0474 $/kWh for the first 30 kWh per day
 0.0597 $/kWh for the balance of the consumption.

 [Example: a user who consumed 660 kWh in a 12 day period would be billed at 0.0474 $/kWh for

 the first 30 x 12 = 360 kWh, and at 0.0597 $/kWh for the next 300 kWh.]

 Construct a program that reads in the total consumption (kWh) and number of days from the work-

sheet, and writes the cost to the user back on the worksheet. Also display the amount owed in a
Message Box that includes the total consumption and number of days.

5. The quadratic formula can be used to find the roots of the quadratic equation ax2 + bx + c = 0 .
 Design a program that reads the values a, b, and c from the worksheet, and then writes the roots

back onto the worksheet as well as displaying them in
a Message Box along with the equation being solved.
Add a single line If statement that detects if b2 < 4ac
and then stops execution with an End statement, or use
a GoTo statement to skip the root calculations.

g = G M for r ≥ R
 r2

 g = GM r for r < R
 R3

− b ± √ b2 − 4 ac
 2a

 1 -29
6. Snell’s Law relates the angle of an incident beam of light (θ1) travelling in a medium having an index

of refraction n1 to the angle of the refracted beam (θ2) in a medium with index of refraction n2 accord-
ing to : sin θ2 / sin θ1 = n1 / n2 where the angles are measured from the normal. Create a program
that reads in the indices of refraction (refer to any physics textbook; identify the two mediums on the
worksheet) and the incident angle from cells on the worksheet (properly labelled). Use trial and error
to find the critical angle beyond which total internal reflection occurs (remember that the ray will be
bent toward the normal when entering a medium with a higher index of refraction, so that no critical
angle exists). The value of the critical angle for the two media should be clearly evident on your work-
sheet. Include a Clear button that clears only the value of the refracted angle, θ2 . Plot a graph of
refracted angle versus incident angle that shows the approach to the critical angle (use 10 points).

7. The lens/ mirror equation 1 + 1 = 1 relates the object location do , image location di , and

do di f
focal length f for convex and concave mirrors and lenses. [Check the sign conventions in any physics
textbook.] Design a program that calculates the image location given the focal length and the object
location. Determine whether lenses and mirrors must be treated with separate buttons. A more
sophisticated version of this problem is given in the problem section of Chapter 2.

8. A Pharmaceutical company produces an antibiotic that is prescribed (in a daily dose) according to

 the mass of the patient :
Amount (in mL) = 0.002 mass2 + 0.0143 mass + 0.14 if mass <= 25 kg

 Amount (in mL) = 0.05 mass + 0.5 if mass > 25 kg

 Construct a program that reads the mass of a patient from an Input Box and then returns the dosage

in a Message Box (along with the mass of the patient).

9. A 1500 kg rocket powered racing car is acted on by a thrust that varies as follows :

 Overall friction is assumed to be constant at 500 N. The force of air resistance (drag) is modeled as

bv2 where “v” is velocity; b = 0.4 if the velocity is less than or equal to 100 m/s and b = 0.5
otherwise. Design a program that reads in the time (less than 50 seconds) and velocity (less than 300
m/s) from the worksheet and then writes the instantaneous acceleration back onto the worksheet. The
net force acting on the object is Fnet = Thrust − drag − friction. [A much less artificial scenario
is given in chapter 6. The data given here is not necessarily realistic].

 time (s) thrust (N)
0 ≤ t < 20 45,000
20 ≤ t < 30 30,000
30 ≤ t < 50 20,000

Accessing Worksheet Functions : No inverse sine function is built into VBA, but the function can be
obtained (or derived) from other built in functions (see Appendix 28). Fortunately, all worksheet
functions can be accessed using the either of the following staements (with ASIN() as an example) :
theta2 = Application.WorksheetFunction.Asin() [you need to provide the appropriate argument]
theta2 = Excel.WorksheetFunction.Asin()

 1 -30

10. A retail store has a wage structure that pays the following base salary and bonuses :

 Base salary example: 50 hours worked gives 35*7.50 + 10*9.5 + 5*11.00. Similarly for the bonus.

 Construct a program that reads in the total hours worked and gross sales, calculates base salary

and sales bonus, and writes them back on the worksheet. The company owner is interested in exam-
ining some performance ratios and also wants the program to calculate sales/hour and sales/salary.
The two ratios should be written on the worksheet.

11. A student will have a final physics mark of between 58.0 and 59.5 “boosted” to a 60 % pass if

certain criteria are met. The first criterion is that the student must not have had a previous boost in
physics, and which will be described by a Boolean variable named Previous_Boost (a True value
of Previous_Boost indicates that a previous boost had occurred). The second criterion is that the
student must have passed at least one of the three term tests with a mark of greater than 65 %.
Design a program that reads in a student’s final physics mark, their 3 term test marks (out of 100),
and a Boolean variable indicating whether a previous boost had occurred. The program should
produce one of four different Message Boxes : an indication that no boost is required, an indication
that no boost is possible because the final mark is less than 58 %, an indication that a boost will be
made, or an indication that the criteria for a boost have not been met. Hint : the first two message
boxes can be placed in single outcome If statements together with End statements.

Hours worked rate ($/hr)
(in a 7 day period)
 t ≤ 35 7.50
35 < t ≤ 45 9.50
greater than 45 11.00

Gross Sales ($) Bonus %

Less than 4,000 5
4,000 to 6,000 7.5
greater than 6,000 10

